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Abstract. The asymptotic behavior of Planck energy elastic and inelastic amplitudes in quantum gravity
is studied by means of the functional integration method. A straight-line path approximation is used to
calculate the functional integrals which arise. Closed relativistically invariant expressions are obtained
for the two “nucleons” elastic and inelastic amplitudes including the radiative corrections. Under the
requirement of “softness” of the secondary gravitons a Poisson distribution for the number of particles
emitted in the collision is found.

1 Introduction

Planck energy gravitational scattering has received consid-
erable attention in recent years because of its relation to
fundamental problems like the strong gravitational forces
near black holes, a string modification of the theory of
gravity and some other effects of quantum gravity [1–14].
In a previous work [14] we have developed a method for
constructing a scattering amplitude in quantum gravity by
means of a functional integral used effectively in quantum
electrodynamics [16,17,34,19–24].

A straight-line path approximation is formulated that
can be used effectively to calculate the functional inte-
grals that occur. It is shown that in the limit of asymp-
totically high energy s � M2

PL � t, where MPL is the
Planck mass, at fixed momentum transfer t the elastic
scattering amplitude of two “nucleons” has the form of a
Glauber representation [14] with an eikonal function de-
pending on the energy. A similar result is obtained by the
“shock-wave method” proposed by ’t Hooft [1], and by
the method of effective topological theory in the Planck
limit proposed by Verlinde and Verlinde [5] and by the
summing of Feynman diagrams in the eikonal approxima-
tion [6]. The main advantage of the proposed approach
over the others is the possibility of performing calcula-
tions in compact form and the correct structure of the
Green’s function and amplitudes etc. is not destroyed by
approximations in the process of the calculations. In the
present report we would like to apply the above method to
study multiple bremsstrahlumg soft gravitons in collisions
which are well known to be an important phenomenon in
high energy particle collisions physics [25–27]. This prob-
lem has recently seen a renewal of interest in the context
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of the gravitational production of particles in an expand-
ing universe [28]. This letter is organized as follows. In
Sect. 2 we determine the elastic scattering amplitude of
two particles in terms of the functional integral, remove
divergences by the mass renormalization of the scattered
“nucleons”, and then, using the straight-line path approx-
imation, we calculate the contributions of the radiative
corrections to the Planck energy scattering amplitude. In
Sect. 3 the problem of the multiple production of “soft”
gravitons in high energy two “nucleon” collisions is in-
tepreted by analogy with the bremsstrahlung emission of
“soft” particles in electrodynamics; the inelastic scattering
amplitude can be obtained by generalizing the procedure
presented in Sect. 2. In Sect. 4 we consider the differential
cross section of inelastic processes, and investigate the be-
havior of the distribution of secondary gravitons produced
in high energy “nucleon” collisions. Finally in Sect. 5, we
draw our conclusions.

2 Elastic scattering amplitudes

We consider the scattering of two scalar particles of the
field ϕ(x), a “nucleon” at high energies, at fixed transfer
in quantum gravity. To construct the representation of the
elastic scattering amplitude in the framework of the func-
tional approach we first find the Green’s function of the
two “nucleons” case, then we must go over in the Green’s
function obtained to the mass shell respectively to the
external ends of the “nucleon” line. Therefore, using the
method of variational derivatives we shall determine the
elastic scattering amplitude

i(2π)4δ4(p1 + p2 − q1 − q2)T (p1, p2; q1, q2)
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i − m2)

×
∫

d4xid4yiei(pixi − qiyi)
)

×
(

exp
[

i
2

∫
d4ξ1d4ξ2

δ

δhαβ(ξ1)

×Dαβγδ(ξ1 − ξ2)
δ

δhγδ(ξ2)

]
.G(x1, y1|h)

×G(x2, y2|h)S0(h))|h=0 , (2.1)

where G(x, y|hµν) is the Green’s function of the “nucleon”
in an external linearized gravitational field. Note that for
the gravitational field in the first-order formalism one can
write down an exact interaction Lagrangian that contains
only a single vertex [14],

L(x) = L0,ϕ(x) + L0,grav.(x) + Lint(x),

where

L0ϕ(x) =
1
2

[∂µϕ(x)∂µϕ(x) − m2ϕ2(x)],

Lint(x) = −κ

2
hµν(x)Tµν(x),

and Tµν(x) = ∂µϕ(x)∂νϕ(x)(1/2)ηµν [∂σϕ(x)∂σϕ(x)
−m2ϕ2(x)] is the energy-momentum tensor of the scalar
field ϕ(x).

The quantity

gµν = ηµν + κhµν

in the form of functional integrals was found in [14]. Now,

G(x, y|hµν) = i
∫ ∞

0
dτe−im2τ

×
∫

[δ4ν]τ0 exp
(

iκ
∫ τ

0
Jµνh

µν

)

×δ4
(
x − y − 2

∫ τ

0
ν(η)dη

)
. (2.2)

The coupling constant κ is related to Newton’s constant
of gravitation G by κ2 = 16πG. In (2.2) we use the nota-
tion

∫
Jih =

∫
hµν(z)Jµν(z) (i = 1, 2), and Jµν(z) is the

current of the “nucleon” defined by

Jµν(z) =
∫ τi

0
dξ(νµ(ξ)νν(ξ))

× δ

(
z − xi + 2piξ + 2

∫ ξ

0
νi(η)dη

)
, (2.3)

and

[δ4ν]τ
2

τ1 =
δ4ν exp [] − i

∫ τ2

τ1
ν2
µ(η)

∏
η d4η∫

δ4ν exp [] − i
∫ τ2

τ1
ν2
µ(η)

∏
η d4η

.

[δ4ν]τ
2

τ1 is a volume element of the functional space of the
four dimensional functions ν(η) in the interval τ1 ≤ η ≤ τ2
and S0(h) is the vacuum expectation of the S-matrix in
the external field hext

µν . We shall henceforth disregard the
contribution of the vacuum loops and put S0(h) = 1. The
function Dαβγδ(x) is the propagator of the free graviton
field,

Dαβγδ(x) = ωαβ,γδ
i

(2π)4

∫
eikx

k2 − µ2 + iε
d4k, (2.4)

ωαβ,γδ = (ηαγηβδ + ηαδηβγ − ηαβηγδ),

ηµν = (1,−1,−1,−1).

Substituting (2.2) to (2.1) and making a number of substi-
tutions of the functional variables [14], we obtain a closed
expression for the two-particle scattering amplitude in the
form of functional integrals:

T (p1, p2; q1, q2) = (κ2)
∫

d4x1d4x2ei(p1−q1)x1+i(p2−q2)x2

×Dαβγδ(x)
∫

[δ4ν1]∞−∞

∫
[δ4ν2]∞−∞

×[p1 + q1 + 2ν1(0)]α[p1 + q1 + 2ν1(0)]β
×[p2 + q2 + 2ν2(0)]γ [p2 + q2 + 2ν2(0)]δ []

×
∫ 1

0
dλ exp

{
1
2

iκ2
[
2iλeikx

∫
J1DJ2

×
∑
i=1,2

(∫
d4kJiDJi − i

∫ ∞

−∞
δim

2dξ
)]}

, (2.5)

where the quantity Jµν
i (k; pi, qi|νi) is a conserving transi-

tion current and is given by

Jµν
i (k; pi, qi|νi) = 4

∫ ∞

−∞
dξ[piθ(ξ) + qiθ(−ξ) + ν(ξ)]µ

× [piθ(ξ) + qiθ(−ξ) + ν(ξ)]ν

× exp

(
2ik
[
piξiθ(ξ) + qiξiθ(−ξ)

+
∫ ξ

0
νi(η)dη

])
, (2.6)

Ji.D.Jk =
∫ ∫

dz1dz2J
µν
i (z1)Dµνασ(z1 − z2)Jασ

k (z2);

i, k = 1, 2.

The scattering amplitude (2.5) is interpreted as the residue
of the two-particle Green’s function (2.1) at the poles cor-
responding to the “nucleon” ends. The factor of the type
exp
(
−(iκ2/2)

∑
i=1,2

∫
JiDJi

)
of (2.5) takes into account

the radiative corrections to the scattered nucleons, while
exp
(
iκ2iλeikx

∫
J1DJ2

)
describes virtual-graviton
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exchange among them. The integral with respect to dλ
ensures subtraction of the contribution of the freely prop-
agating particles from the matrix element. The functional
variables ν1(η) and ν2(η), formally introduced for obtain-
ing the solution for the Green’s function, describe the
deviation of a particle trajectory from the straight-line
paths. The functional with respect to [δ4νi] (i = 1, 2)
corresponds to summation over all possible trajectories
of the colliding particles. Expanding the expression (2.5)
with respect to the coupling constant κ2 and taking the
functional integrals with νi(η), we obtain the well-known
series of usual perturbation theory for two-particle scat-
tering. From the consideration of the integrals over ξ1 and
ξ2 for exp

(
−(iκ2/2)

∑
i=1,2

∫
JiDJi

)
it is seen that the

radiative corrections result in divergent expressions of the
type δim

2 × (A → ∞). To regularize them, it is neces-
sary to renormalize the mass, that is, to separate from
exp
(
−(iκ2/2)

∑
i=1,2

∫
JiDJi

)
the terms δim

2 × (A →
∞); i = 1, 2, after which we go over in (2.5) to the ob-
served masses mi

2
R = mi

2
0 + δim

2 .
Hitherto, no assumptions have been made. To advance

in the investigation of the elastic amplitude we make the
following assumption. We assume that all gravitons are
“soft”, i.e. their four-momenta are small compored with
the momentum of the two “nucleon” system as well as
the momentum between them and satifies the following
condition:

1√
s

N∑
i=1

k0i 	 1;

|
N∑
i=1

ki⊥| 	 |p1⊥ − q1⊥| ≈ |p2⊥ − q2⊥|, (2.7)

where the particle momentum components are given in the
centre of mass system, the moment of the intial “nucle-
ons” being taken along the z axis. This means that in the
propagators we can neglect terms of the form

∑
i �=j kikj

compared with 2p
∑

i ki, i.e. we can make the substitution
m2 −

(
p −

n∑
i=1

ki

)2



−1

→
[

2p
n∑
i=1

ki −
n∑
i=1

k2
i

]−1

,

where p is the momentum of one of the “nucleons” and
ki are the momenta of the gravitons. This approximation,
which is called the straight-line path approximation, cor-
responds [14–17,34,19–21] to the approximate calculation
of the Feynman path integrals in (2.5) in accordance with
the rule∫

[δ4ν]F1[ν] exp {F2[ν]} = F1[ν] exp
{
F2[ν]

}
, ) (2.8)

Fi[ν] =
∫

[δ4ν]Fi[ν]; i = 1, 2.

In this approximation, (2.8), the scattering amplitude of
the elastic process takes the form

T (p1, p2; q1, q2) = κ2R(t)
∫

d4xei(p1−q1)x

×∆(x; p1, p2; q1, q2)
∫ 1

0
dλ

× exp {iλχ(x; p1, p2, q1, q2)} , (2.9)

where

∆(x; p1, p2; q1, q2) =
∫

d4kDµνρσ(k) exp[ikx]

×[k + p1 + q1]µ[k + p1 + q1]ν
×[−k + p2 + q2]ρ[−k + p2 + q2]σ, (2.10)

Jµν
i (k, pi, qi) =

∫
[δ4νi]∞−∞Jµν

i (k, pi, qi|νi)

=
[

(2pi + k)µ(2pi + k)ν

2pik + k2 + iε

− (2qi − k)µ(2qi − k)ν

2q1k − k2 − iε

]
, (2.11)

χ(x; p1, p2, q1, q2) = − iκ2

(2π)4

∫
d4keikxDµνρσ(k)

×Jµν
1 (−k, p1, q1)Jρσ

2 (k, p1, q2), (2.12)

Jµν
1 (−k, p1, q1)Jρσ

2 (k, p2, q2)

=
∫

[δ4ν1]∞−∞[δ4ν2]∞−∞

×Jµν
1 (−k, p1, q1|ν1)Jµν

2 (k, p2, q2|ν2)

=
[

(2p1 + k)µ(2p1 + k)ν

2p1k + k2 + iε
− (2q1 − k)µ(2q1 − k)ν

2q1k − k2 − iε

]

×
[

(2p2 − k)ρ(2p2 − k)σ

2p2k − k2 − iε

− (2q2 + k)ρ(2q2 + k)σ

2q2k + k2 + iε

]
, (2.13)

R(t) = exp

{
2∑

i=1

[
iκ2

2(2π)2

∫
d4kDµνρσ(k)

× Jµν
i (k; pi, qi)J

ρσ
i (−k; pi, qi) − δim

2(A → ∞)
]}

= exp

{
iκ2

2(2π)2

2∑
i=1

∫
d4kDµνρσ(k)

×
[

(2pi + k)µ(2pi + k)ν(2pi + k)ρ(2pi + k)σ

(2pik + k2)2

+
(2qi + k)µ(2qi + k)ν(2qi + k)ρ(2qi + k)σ

(2qik + k2)2

− 2(2pi + k)µ(2pi + k)ν(2qi + k)ρ(2qi + k)σ

(2pik + k2)(2qik + k2)

]}
.

(2.14)
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It is interesting to note that the contribution of the radia-
tive corrections (2.14) can be factorized in the given ap-
proximation of (2.8) in the form of a factor R(t). A similar
factorization of the contributions of radiative corections
occurs in the case of quantum electrodynamics [32]. In
the calculation of R(t) we must take care of the infrared
divergences which we have treated above by the insertion
of a small graviton mass µ. Evaluating the integrals in
(2.14) for the radiative corrections (2.14) we obtain the
following expression [15]:

R(t)t<0 = exp

{
κ2m2t

2(2π)2

[
ln

m2

µ2 − m2√−t(4m2 − t)

×
(

ln
m2

√
4m2 − t

µ2 ln
√

4m2 − t +
√−t√

4m2 − t − √−t

)
+ Φ(z1)

−Φ(z2)
]}

, (2.15)

Φ(z) =
∫ z

0

dy
y

ln |1 − y|;

z1 =
√

4m2 − t +
√
t

2
√

4m2 − t
;

z1 =
√

4m2 − t − √
t

2
√

4m2 − t
.

Let us consider the asymptotic behavior of the scattering
amplitude (2.9) at high energy s → ∞ at fixed momentum
transfer t (forward scattering). We make the calculation in
the centre of mass system of the colliding particles: p1 =
−p2 = p, and we direct the z axis along the momentum
p1 . In the high energy limit s � M2

PL � t where MPL is
the Planck mass, at fixed momentum transfer t limited by
the condition |t| 	 m2, the values of the eikonal function
and radiative corrections are

χ(x⊥) =
κ2.s

2π
K0(µ|x⊥),

R(t) = exp(at),

where K0(µ|x⊥) is the MacDonald function of zeroth or-
der, and

a =
2Gm2

π

(
ln

m2

µ2 +
1
2

)
, (2.16)

where µ is a graviton mass which serves as an infrared cut-
off. Thus, in the given asymptotic limit the expression for
the elastic scattering amplitude (2.8) has the form1 [31]

T (s, t) = −2zi(s − u)f(t)eat, (2.17)

1 Allowance for the identity of the “nucleons” leads to terms
that vanish in the limit s → ∞ and for t fixed when expression
(2.17) is symmetrized.

where

f(t) =
1
2

∫
d2x⊥e−iq⊥x⊥(e−iχ(x⊥) − 1) (2.18)

is the elastic scattering amplitude without taking into
account radiations corrections, and t = −q⊥2. Formula
(2.17) shows that allowance for radiative effects leads to a
diffraction behavior of the high energy small-angle scatter-
ing amplitude. The forces due to the change of graviton
between the “nucleons” obviously have a range h̄/µc, it
being assumed that h̄/µc � κ(h̄/mc). Thus, in the region
µ2 ≤ |t| ≤ m2, allowance for graviton exchange becomes
important and leads to an eikonal structure of f(t).

3 Inelastic amplitudes

Here we shall consider a generalization of the above
method to the construction of inelastic amplitudes. The
production of secondary particles in the collision of two
“nucleons” is intepreted by analogy with bremsstrahlung
emission of soft particles in electrodynamics, i.e. the col-
liding “nucleons” interact by changing virtual quanta of
the field hµν and emit at the same time secondary parti-
cles [19,25]. The amplitude of the above inelastic process
can be obtained as follows. We first construct the scatter-
ing amplitude T (p1, p2; q1, q2|hext) of the two “nucleons”
in the presence of the external classical field hext

µν . The
quantity T (p1, p2; q1, q2|hext) can be obtained by expres-
sion (2.1) in which one must set h = hext

µν after variational
derivatives have been taken. As a result, we have

T (p1, p2; q1, q2|hext)

= (κ2)
∫

d4x1d4x2ei(p1−q1)x1+i(p2−q2)x2

×Dαβγδ(x)
∫

[δ4ν1]∞−∞

∫
[δ4ν2]∞−∞

×[p1 + q1 + 2ν1(0)]α[p1 + q1 + 2ν1(0)]β
×[p2 + q2 + 2ν2(0)]γ [p2 + q2 + 2ν2(0)]δ

×
∫ 1

0
dλ exp

{
1
2

iκ2
[
2iλeikx

∫
J1DJ2

×
∑
i=1,2

(∫
d4kJiDJi − i

∫ ∞

−∞
δim

2dξ
)]}

× exp
{

−iκ
∫

d4lhext
µν (l)[J1(l)eilx1 + j2(l)eilx2 ]

}
. (3.1)

Further we apply to T (p1, p2; q1, q2|hext) the operator

N∏
i=1

εiµν(ki)
(2π)3/2

√
2k0i

δ

δhext
µν (ki)

; (3.2)

then setting hext
µν = 0, we obtained the amplitude for the

production of N gravitons in the collision of two “nucle-
ons”:

(2π)4δ4

(
p1 + p2 − q1 − q2 −

i=N∑
i=1

ki

)
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×iTinel(p1, p2; q1, q2|k1, k2, ...kN )

= (κ2)
∫

d4x1d4x2ei(p1−q1)x1+i(p2−q2)x2Dαβγδ(x)

×
∫

[δ4ν1]∞−∞

∫
[δ4ν2]∞−∞[p1 + q1 + 2ν1(0)]α

×[p1 + q1 + 2ν1(0)]β [p2 + q2 + 2ν2(0)]γ
×[p2 + q2 + 2ν2(0)]δ]

×
∫ 1

0
dλ exp


1

2
iκ2


2iλeikx

∫
J1DJ2

×
∑
i=1,2

(∫
d4kJiDJi − i

∫ ∞

−∞
δim

2dξ
)



× 1√
N !

N∏
i=1

εiµν(ki)
(2π)3/2

√
2k0i

(−iκ)

×[J1(ki)eikix1 + j2(ki)eikix2 ], (3.3)

where εiµν(ki) is the polarization tensor of a graviton with
momentum ki . We have introduced in (3.3) the factor
N !1/2 which takes into account the fact that the emit-
ted gravitons are identical. In the approximation (2.8) the
scattering amplitude of the inelastic process (2.16) takes
the form

Tinel(p1, p2; q1, q2, k1|k2, ...kN ) =
∫

d4xei(p1−q1)x

×[k + p1 + q1]µ[k + p1 + q1]νDµνρσ(x)
×[−k + p2 + q2]ρ[−k + p2 + q2]σ

×
∫ 1

0
exp
(

− iλκ2

(2π)4

∫
d4kDµνρσ(k)eikxJµν

1 (−k)Jρσ
2 (k)

)

× exp

(
−κ2

2

2∑
i=1

∫
(DJi − δm2

i )

)

× 1√
N !

N∏
i=1

εiµν(ki)
(2π)3/2

√
2k0i

(iκ)

×[Jµν
1 (ki)eikix/2 + Jµν

2 (ki)e−ikix/2]. (3.4)

In (3.4) we have taken into account the law of conserva-
tion of energy-momentum. We have separated out the δ4-
function δ4

(
p1 + p2 − q1 − q2 −∑i=N

i=1 ki

)
. Note that by

virtue of our assumption (2.7) that the created gravitons
have small momenta we can set ki = 0(i = 1, 2, 3, ..., N) in
(3.4) in the expressions exp(±ikix/2). In other words, we
consider the production of “soft” gravitons which do not
affect the motion of the scattered high energy “nucleons”.

4 Asymptotic behavior of the differential
cross section for multiple production

The differential cross section for the production of N
gravitons in a collision of two “nucleons” is given by

dσn =
1

2
√
s(s − 4m2)

|Tinel(p1, p2; q1, q2|k1, k2, ..., kN )|2

×δ4

(
p1 + p2 − q1 − q2 −

N∑
i=1

ki

)

× 1
(2π)6

d3q1
2q10

d3q2
2q20

.
1
n!

n∏
i=1

d3ki
2k0i

1
(2π)3

, (4.1)

where s = (p1 + p2)2. In what follows we shall be inter-
ested in the asymptotic behavior of the differential cross
sections for the production processes of “soft” gravitons
whose momenta are restricted by the conditions (2.7). As
we shall show we can neglect the interference terms in this
case in the inelastic scattering amplitude (3.3) i.e.

Tinel(p1, p2; q1, q2, k1, k2, ...kN ) = Tel(p1, p2; q1, q2)

×
n1∏
i=1

εiµν(ki)J
µν
1 (k, p1, q1)

n2∏
i=1

εiµν(ki)J
µν
2 (k, p2, q2), (4.2)

where

t = ∆2 =

(
q1 − p1 +

i=n1∑
i=1

ki

)2

=

(
q2 − p2 +

i=n2∑
i=1

k′
i

)2

, (4.3)

n1 + n2 = N.

Using (4.2) and the transformation

δ4

(
p1 + p2 − q1 − q2 −

n1∑
i=1

ki −
n2∑
i=1

k′
i

)

=
∫

d4∆δ4

(
p1 − q1 −

n1∑
i=1

ki + ∆

)

×δ4

(
p2 − q2 −

n2∑
i=1

k′
i − ∆

)
, (4.4)

we can represent the differential cross section for graviton
production (4.1) in the form

(dσ)n1,n2 =
1
2s

d4∆

(2π)4
|Tel(s, t)|2Wn1(p1, ∆)

×Wn2(p2,−∆), (4.5)

where Tel(p1, p2; q1, q2) = Tel(s, t) is defined by (2.9), and

Wni(pi, ∆) =
2π
ni

∫
d3qi
2qi0

δ4

(
pi − qi −

∑
i=1

ki + ∆

)

×
ni∏
i=1

d3ki
2k0i

−κ2

(2π)3
|Jµν

i (k, pi, qi)|2, (4.6)

and there is a similar expression for the Wn2(p2,−∆) The
quantities Wn1(p1, ∆) and Wn2(p2,−∆) depend on the
variables

t = ∆2, r1 = p1∆,
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t = ∆2, r2 = p2∆, (4.7)

respectively. Using the variables (4.7), we transform the
volume element d4∆ to the form

d4∆ =
4π√

s(s − 4m2)
dtdr1dr2

dφ
2π

, (4.8)

where φ is the azimuthal angle, the physical domain of the
integration variables being given by the inequalities

−t ≤ 2r1 ≤ s,

−t ≤ 2r2 ≤ s,

s ≥ m2; −s ≤ t ≤ 0. (4.9)

In what follows we shall be interested in the differential
cross section (dσ/dt)n1,n2 in the limit s −→ ∞ with t
fixed. Integrating (4.6) over dr1 and dr2 and using formula
(2.17), and for t fixed, |t| 	 m2; s −→ ∞, we obtain the
expression(

dσ
dt

)
n1,n2

−→ 1
4π

|f(t)|2ωn1(s, t)ωn2(s, t), (4.10)

where

ωn(s, t) =
eat

π

∫
drWn(s, t)

=
1
n!

eat
ni∏
i=1

d3ki
2k0i

(−κ2)
(2π)3

|Jµν
i (k, pi, qi)|2. (4.11)

The domain of integration Ωp over the moment of the
secondary gravitons is given by

−t ≤ 2p
n∑
i=1

ki −
(
∆ −

n∑
i=1

)2

≤ s, (4.12)

or, since in our case (∆ −∑n
i=1 ki)

2 ≈ ∆2, by the condi-
tion

0 ≤ 2p
n∑
i=1

ki ≤ s + t. (4.13)

Let now consider the approximation in which one can ne-
glect the total momentum of the emitted gravitons in ac-
cordance with the “softness” condition (2.7). In this ap-
proximation the expression (4.11) takes the form of a Pois-
son distribution,

ωn(s, t) =
1
n!

eat[n(s, t)]n, (4.14)

where

n(s, t) = − κ2

(2π)3

∫
d3ki
2k0i

|Jµν
i (k, pi, qi)|2. (4.15)

The integration (4.15) is effectively restricted by the con-
ditions: |kz| ≤ Rz, |kz| ≤ R⊥. The quantity n(s, t) play
the role of the average number of particles in a collision
of two “nucleons” at high energy s −→ ∞ and fixed t. In
general, n(s, t) depends on the method chosen to cut off
the integrals over the momenta of the emitted gravitons
at the upper limit [23]. In particular, if

R2
⊥ ∼ m2; 1 � α2 � µ2/m2,

ln(m2/µ2) � ln(1/α)2; α = Rz/p0, (4.16)

|t| ≤ m2,

using formula (2.17) for Jµν
i (k, pi, qi), we find

n(s, t) = −bt, (4.17)

b =
4Gm2

π

(
ln

m2

µ2 +
1
2

)
, (4.18)

which is twice the “nucleon” parameter (2.16) of the
diffraction exponent function. Note also that the equation
2a = b holds in the infrared asymptotic limit µ −→ 0.
In this case the dependence on t cancels as a result of
the summation in (4.11) over the number of all the emit-
ted gravitons, and this leads to the disappearance of the
diffraction peak in the differential cross section. A sim-
ilar behavior was noted in [34] and is analogous to the
self-similar behavior of the deep inelastic processes of the
hadron interaction at high energy [33,34].

As we have mentioned, we have neglected the interfer-
ence terms in the derivation (4.2); if we allowed for these
terms in the exponent for n(s, t) we should obtain terms
of the type

κ2

(2π)

∫
d3k

k0
Jµν

1 (−k, p1, q1)Jρσ
2 (k, p2, q2), (4.19)

which are infinitesimally small in the high energy limit
s −→ ∞ with fixed t provided the conditions (4.16) above
are satisfied [23].

5 Conclusions

In the framework of the functional integration method the
asymptotic behavior of Planck energy elastic and inelas-
tic amplitudes in quantum gravity is studied. A straight-
line path approximation is used to calculate the func-
tional integrals which arise. Closed relativistically invari-
ant expressions are obtained for the two “nucleons” elastic
and inelastic amplitudes including the radiative correc-
tion contributions. It is interesting to note that the to-
tal differential cross section summed over all the emitted
gravitons may have no pronounced diffraction peak in a
certain domain of momentum transfer. In this connection
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an analogy should be indicated with the automodel be-
havior of the cross section of high energy deep inelastic
interactions of hadrons with leptons. Under the require-
ment of the “softness” of graviton production, the high
energy two “nucleon” collision is considered by analogy
with bremsstrahlung emission of soft particles in electro-
dynamics. The Poisson nature of the multiplicity distribu-
tion of secondary gravitons for fixed momentum transfers
in high energy “nucleon” collisions is given.

The straight-line path approximation used in this work
corresponds to a physical picture in which colliding high
energy “nucleons” at the interaction receive a small recoil
connected with the emission of “soft” gravitons and retain
their individuality.
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